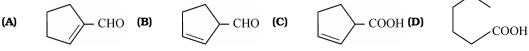


Date Planned : / /	Daily Tutorial Sheet-1	Expected Duration : 45 Min	
Actual Date of Attempt ://	JEE Main (Archive)	Exact Duration :	

2 10 10		• · · · · · · · · · · · · · · · · · · ·	V== ::::	(/ /		
1.	The reagent with which both acetaldehyde and acetone react easily is :					
	(A)	Tollen's reagent	(B	Schiff's reage	ent	
	(C)	Grignard's reagent	(D) Fehling's reas	gent	
2.	Which of the following has the most acidic hydrogen?				(2000)	
	(A)	3-hexanone	(B) 2, 4-hexaned	ione	
	(C)	2, 5-hexanedione	(D) 2, 3-hexaned	ione	
3.	A mixture of benzaldehyde and formaldehyde on heating with aqueous NaOH solution gives :				(2001)	
	(A)	Benzyl alcohol and sodium for	ormate (B) Sodium benz	oate and methyl alcohol	
	(C)	Sodium benzoate and sodium	n formate (D) Benzyl alcoh	ol and methyl alcohol	
4.	The or	der of reactivity of phenyl mag	nesium bromic	de with the following	g compounds is :	(2004)



(A) (II) > (III) > (I)

(B) (I) > (III) > (II)

(C) (II) > (I) > (III)

- (**D**) All of these
- **5.** Cyclohexene on ozonolysis followed by reaction with zinc dust and water gives compound E. Compound E on further treatment with aqueous KOH yields compound F. Compound F is: (2007)

- **6.** In the Cannizzaro reaction given below, $2PhCHO \xrightarrow{-OH} PhCH_2OH + PhCO_2^-$ the slowest step is :
 - **(A)** The attack of -OH at the carbonyl group

(2009)

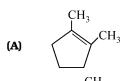
- **(B)** The transfer of hydride to the carbonyl group
- **(C)** The abstraction of proton from the carboxylic acid
- **(D)** The deprotonation of PhCH₂OH
- **7.** Trichloroacetaldehyde was subjected to Cannizzaro's reaction by using NaOH. The mixture of the products contains sodium trichloroacetate ion and another compound. The other compound is: **(2011)**
 - (A) 2, 2, 2-trichlorehanol
- (B) trichloromethanol
- **(C)** 2, 2, 2-trichloropropanol
- (**D**) chloroform
- **8.** The most suitable reagent for the conversion of $R-CH_2-OH \rightarrow R-CHO$ is: (2014)
 - **(A)** KMnO₄

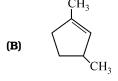
(B) $K_2Cr_2O_7$

(C) CrO_3

- **(D)** PCC (pyridinium chlorochromate)
- 9. In the reaction, $CH_3CHO \xrightarrow{NaBH_4} A \xrightarrow{PCl_5} B \xrightarrow{Alc. KOH} C$. The product C is : (2014)
 - (A) ethyl alcohol

(B) acetylene


(C) ethylene


(D) acetyl chloride

10. Which compound would give 5-keto-2-methyl hexanal upon ozonolysis?

(2015)

- (D)
- 11. A compound A with molecular formula $C_{10}H_{13}Cl$ gives a white precipitate on adding silver nitrate solution. A on reacting with alcoholic KOH gives compound B as the main product. B on ozonolysis gives C and D. C gives Cannizzoro's reaction but not aldol condensation. D gives aldol condensation but not Cannizzoro's reaction. A is: (2015)

(D)

- $\mathrm{C_6H_5} \mathrm{CH_2} \mathrm{C} \underbrace{\subset^{\mathrm{CH_3}}_{\mathrm{CH_3}}}$ (A)
- (B) $\begin{array}{c} \mathrm{C_6H_5} \mathrm{CH_2} \mathrm{CH_2} \mathrm{CH} \mathrm{CH_3} \\ | \\ \mathrm{Cl} \end{array}$

(C)
$$C_6H_5 - CH_2 - CH_2 - CH_2 - CH_2 - CI$$

- $CH_2 CH_2 CH_3$
- In the reaction 2CH $_3\text{CHO} \xrightarrow{\quad \text{OH}^-\quad}$ A $\xrightarrow{\quad \Delta\quad}$ B; the product B is : **12**.

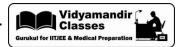
(2015)

- $\begin{array}{c} \operatorname{CH}_3 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{CH}_2 \operatorname{OH} \\ \\ \operatorname{O} \\ \| \\ \operatorname{CH}_3 \operatorname{C} \operatorname{CH}_3 \end{array}$
- $CH_3 CH = CH CHO$ **(B)**

(C)

- **(D)** $CH_3 CH_2 CH_2 CH_3$
- In the following sequence of reactions Toluene $\xrightarrow{\quad KMnO_4\quad } A \xrightarrow{\quad SOCl_2\quad } B \xrightarrow{\quad H_2/Pd\quad } C \ , \ the \ product \ C$ 13.

is: (2015)


(A) C₆H₅COOH

(B) $C_6H_5CH_3$

(C) C₆H₅CH₂OH

- **(D)** C₆H₅CHO
- 14. The major product obtained in the following reaction is:

(2017)

15. The correct sequence of reagents for the following conversion will be :

(2017)

- (A) $\left[Ag(NH_3)_2\right]^+OH^-, CH_3MgBr, H^+/CH_3OH$
- **(B)** $\left[Ag(NH_3)_2 \right]^+ OH^-, H^+ / CH_3OH, CH_3MgBr$
- (C) $CH_3MgBr, H^+ / CH_3OH, [Ag(NH_3)_2]^+ OH^-$
- (D) $CH_3MgBr, \left[Ag\left(NH_3\right)_2\right]^+OH^-, H^+/CH_3OH$

Major products of the following reactions are:
$$+ \text{HCHO} \xrightarrow{\text{I. 50\% NaOH}}$$
 (2019)

(A) CH₃OH and HCO₂H

16.

- (B) HCOOH and
- (C) CH₃OH and COOH
- CH₂OH and COOH

OH

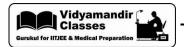
 $_{\sim}$ CH $_{3}$

HO,

17. The major product of the following reaction is :

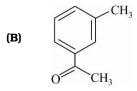
(2019)

$$(A)$$
 (B) (C) (D)

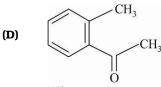

(D)

18. The major product 'Y' in the following reaction is:

(2019)


Ph
$$CH_3$$
 $NaOCl imes X frac{(i) SOCl_2}{(ii) aniline} imes Y$

(D)



19. Compound $A(C_9H_{10}O)$ shows positive iodoform test. Oxidation of A with $KMnO_4$ / KOH gives acid $B(C_8H_6O_4)$. Anhydride of B is used for the preparation of phenolphthalein. Compound A is: (2019)

(A) O

(C) CH₂—C—H

- 20. In the following reaction, carbonyl compound +MeOH ← acetal. Rate of the reaction is the highest for: (2019)
 - (A) Acetone as substrate and methanol in excess
 - **(B)** Propanal as substrate and methanol in excess
 - (C) Propanal as substrate and methanol in stoichiometric amount
 - (D) Acetone as substrate and methanol in stoichiometric amount
- **21.** Which of the following compounds will show the maximum 'enol' content?

(2019)

(A) CH₃COCH₂COCH₃

- (B) $CH_3COCH_2CONH_2$
- (C) CH₃COCH₂COOC₂H₅
- (**D**) CH_3COCH_3
- **22.** The major product obtained in the following reaction is:

(2019)

23. The major product of the following reaction is :

(2019)

Br (1) KOH (aqueous)
$$(2) \operatorname{CrO}_3/\operatorname{H}^+$$

$$(3) \operatorname{H}_2 \operatorname{SO}_4/\Delta$$

$$(3) \operatorname{HO}$$

$$(4)$$

$$(5) \operatorname{HO}$$

$$(6)$$

$$(7) \operatorname{HO}$$

$$(8)$$

$$(8)$$

$$(8)$$

$$(9) \operatorname{HO}$$

$$(1) \operatorname{KOH} (aqueous)$$

$$(3) \operatorname{H}_2 \operatorname{SO}_4/\Delta$$

$$(6)$$

$$(7) \operatorname{HO}$$

$$(8)$$

$$(9) \operatorname{HO}$$

$$(1) \operatorname{KOH} (aqueous)$$

$$(2) \operatorname{CrO}_3/\operatorname{H}^+$$

$$(3) \operatorname{H}_2 \operatorname{SO}_4/\Delta$$

$$(6) \operatorname{HO}$$

$$(7) \operatorname{HO}$$

$$(8) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(2) \operatorname{CrO}_3/\operatorname{H}^+$$

$$(3) \operatorname{H}_2 \operatorname{SO}_4/\Delta$$

$$(6) \operatorname{HO}$$

$$(7) \operatorname{HO}$$

$$(8) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(2) \operatorname{HO}$$

$$(3) \operatorname{H}_2 \operatorname{HO}$$

$$(4) \operatorname{HO}$$

$$(5) \operatorname{HO}$$

$$(6) \operatorname{HO}$$

$$(7) \operatorname{HO}$$

$$(8) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(2) \operatorname{HO}$$

$$(3) \operatorname{HO}$$

$$(4) \operatorname{HO}$$

$$(5) \operatorname{HO}$$

$$(6) \operatorname{HO}$$

$$(7) \operatorname{HO}$$

$$(8) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(2) \operatorname{HO}$$

$$(3) \operatorname{HO}$$

$$(4) \operatorname{HO}$$

$$(6) \operatorname{HO}$$

$$(7) \operatorname{HO}$$

$$(8) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(9) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

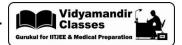
$$(1) \operatorname{HO}$$

$$(1) \operatorname{HO}$$

$$(2) \operatorname{HO}$$

$$(3) \operatorname{HO}$$

$$(4) \operatorname{HO}$$


$$(5) \operatorname{HO}$$

$$(6) \operatorname{HO}$$

$$(7) \operatorname{HO}$$

$$(8) \operatorname{HO}$$

$$(9) \operatorname{$$

24. The major product formed in the following reaction is :

(2019)

25. The tests performed on compound X and their inference are :

(2019)

Γest

Inference

- (a) 2, 4-DNP test
- Coloured precipitate
- **(b)** Iodoform test
- Yellow precipitate
- (c) Azo-dye test
- No dye formation

Compound 'X' is:

$$H_3C$$
 CH_3 $COCH_3$

26. The major product obtained in the following reaction is:

CO₂Et

(B)

(2019)

NaOEt/
$$\Delta$$

NaOEt/ Δ
 CO_2Et
 CO_2Et

27. The major product of the following reaction is :

(2019)

$$\begin{array}{c} \text{CH}_{3}\text{N} \\ \text{CH}_{3}\text{NH} \\ \text{(A)} \end{array}$$

(C)

(A)

(D)

28. The major product of the following reaction is:

(2019)

(B)

(C)

(D)

(2019)

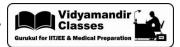
$$CH_{3} \xrightarrow{CH_{3}} CH_{3} \xrightarrow{H_{3}O^{+}} [A] \xrightarrow{H_{3}O^{+}} [B]$$

$$A = CH_3$$
 CH_3 $B = CH_3$

$$A = CH_3$$

 CH_3 ; $B = CH_3$

$$A = \begin{array}{c} OH & O \\ H_3C & H \end{array}$$


$$A = \begin{array}{c} OH \\ H_3C \\ CH_3 \end{array} ; B = \begin{array}{c} CH_3 \\ H_3C \\ CH_3 \end{array}$$

30.

Among the following four aromatic compounds, which one will have the lowest melting point? (2019)

(B)

(D)

- 31. The aldehydes which will not form Grignard product with one equivalent Grignard reagents are: (2019)
 - (A) CHO

(B) HO₂C CHO

- (c) H.CO CHO
- (D) $_{\rm HOH_2C}$

(A) (C), (D)

(B) (B), (C), (D)

(C) (B), (C)

- **(D)** (B), (D)
- **32.** In the following reaction, Aldehyde + Alcohol \xrightarrow{HCl} Acetal

(2019)

Aldehyde Alcohol

HCHO ^tBuOH CH₃CHO MeOH

The best combination is:

(A) HCHO and MeOH

(B) CH₃CHO and ^tBuOH

(C) HCHO and ^tBuOH

- **(D)** CH₃CHO and MeOH
- **33.** The major product of the following reaction is :

(2019)

(A) OH

(B)

OH

(C)

OEt

(D)

(2019)

 $\textbf{34.} \qquad \text{The major product `X' formed in the following reaction is:} \\$

$$CH_{2}-C-OCH_{3}$$

$$NaBH_{4} \longrightarrow X$$

$$MeOH \longrightarrow X$$

(C)

35. The major product the following reaction :

(2019)

$$\begin{array}{c} \text{COCH}_3 \\ \\ \hline \\ \text{CH}_3 \end{array} \xrightarrow{ \text{(i) KMnO}_4 / \text{KOH, } \Delta } \\ \\ \text{CH}_3 \end{array}$$

HOOC COOH

(B)

(D)

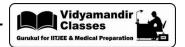
(B)

(B)

36. The major product in the following conversion is :

(2019)

$$\text{CH}_{3}\text{O-} \underbrace{\hspace{1.5cm} \text{CH=CH-CH}_{3} \frac{\text{HBr(excess)}}{\text{Heat}}}_{}?$$


(A)
$$CH_3O-CH_2-CH-CH_3$$

(C)
$$CH_3O - CH - CH_2 - CH_3$$

(**D**)
$$HO - CH_2 - CH_2 - CH_2$$

37. The major product of the following reaction is :

(2019)

(D)

(2019)

An unsaturated hydrocarbon X absorbs two hydrogen molecules on catalytic hydrogenation, and also 38. gives following reaction $X \xrightarrow{O_3} A \xrightarrow{}$ $\xrightarrow{[\operatorname{Ag}(\operatorname{NH}_3)_2]^+} \ \operatorname{B}(3\text{-oxo-hexanedicarboxylic acid}) \ \operatorname{X} \ \text{will be:}$

(A) (B) (C) (2020) (D)

39. In the following reaction A is: (2020)

(i) Br2, hv (ii) KÕH (alc.) (iii) O₃ (iv) (CH₃)₂S (v) NaOH (aq) $+\Delta$ (A) (C)

40. The major products of the following reactions are:

(B)

(1) CHCl₃/aq.NaOH (2) HCHO, NaOH (conc.) $(3) H_3O^{-1}$ OH OHCOOH OH (B) and Formic acid and Methanol OH

COOH OH (C) (D) and Formic acid and Methanol C1

(A)